Augmented and Virtual Reality: Now more about improving User Experience

We cannot eat popcorn wearing a virtual reality (VR) headset – Zaid Mahomedy : ImmersiveAuthority.com

IIn 1995, the cringe worthy Johnny Mnemonic was released where he used a VR headset and gesture monitoring gloves to control the “future internet”. Even though this movie was over 20 years ago, it is only in the past few years we are seeing commercially ready Virtual Reality (VR) and Augmented Reality (AR) technologies hit the market.

If you watch this clip, you will hopefully notice two aspects. The first is that the technology is clunky. The second is that the predicted user experience (UX) he has is rich (for the decade of movie production): information is available at speed, the gloves are accurate, and the path and usability is seamless. When he moves his hands, the VR3 responds instantaneous. It assists him at every turn. Yet twenty years later, we have not reached this quite yet. Why? Because the focus needs to shift from technology to other aspects to enable this industry to flourish.

1: Technology Moves Aside for User Experience.

A large amount of technology companies efforts in this space in the past two years has been mostly focused at determining can they squeeze enough compute power onto a pair of glasses. Other questions to be answered were around if the battery will last a decent amount of time and will the heat emissions be low enough not to inconvenience the user. Whilst there are still optimizations to be performed, the core of the technology has at least been proven, along with some clever innovations around leveraging smart phones to save on hardware investments.

In the coming years we will see a larger amount of these companies focusing on user experience we have with these technologies – ensuring the interfaces,gesture and motion recognition are close to perfect are high on companies to-do lists. The hardware road-map will ensure they are lighter, more robust and frankly – sexier to wear. Before we discuss other aspects of how improved UX will be the focus of the coming years, its not to stay that technology wont help on this. For example, the evolution of flexible compute paradigms specifically in the nano technology area will assist in building compute into glasses, instead of adding compute retrospectively.

2: Difference in Psychologies

Apart from the technology of VR and AR being quite different under the hood, the psychology of how they are used is also. With AR, we are injecting a digital layer between us and the physical world. With VR, we are immersing ourselves into a digital world. These are very different experiences and the user experience design must have this difference at its core. We must ensure that the layer we design for AR takes characteristics from both our physical environment and our own personas. With VR, its much more emphatic to ensure the person feels comfortable and safe in that world.

3: Interfaces to VR/AR UX

The UX Design of AR and VR technologies and applications will require careful management of multiple input styles. Using wearables, voice recognition, AR and AI, we will start to see seamless blending and integration with how technology interacts with us across various senses. Touch devices are still being used, but they will move aside for voice recognition, movement tracking and even brain waves to be used to control these smart devices. The communication will be much faster and intimate, and will force designers to completely rethink how we interact with these devices.

4: The Role of AI in UX

The UX of these devices will also require more human like interactions, to built trust between the devices and the users in an organic manner. We are seeing this with voice control technology like Siri and Google Home, but they are understanding our voice, with some sample responses. Soon they will learn to evolve their speech.

Artificial intelligence will take hold of the user experience to analyze the reaction to different experiences and then make changes in real time to those assessments. UX will become a much more intuitive and personalized experience in the coming years.

5: Convergence of VR and AR Standards

Already we are seeing a myriad of startups evolving in the space, some focusing on content development in software, some on the actual hardware itself. Some are brave enough to have both on offer. We also have the larger companies creating divisions to provide offerings in this space. Choice is great, but when it becomes painful trying on your fourteenth pair of glasses at your average conference, it is not. When one takes time to observe how companies are beginning to partner up to offer solutions ( a trend extremely common in the IoT industry) it is a small step towards some form of standardization. Excessive choice can be bad from a UX perspective, as with such segregation in initial design makes it harder for app designers to get it right on the hardware.

6: Realistic Market Sensing

At some point, we have to get away from the “Toys” feel for these devices. We put them on for ten minutes in an airport or at an event to get a wow from it. Whilst the applications in the gaming industries are there to be seen, companies are beginning to focus on where else the market will be. Certain devices have flopped in the past two years, and you would wonder why with such strong brands. The first reason was awful UX. The second was the market just was not ready, with a distinct lack of content to make them anyway useful. Just because a few of these devices fail, doesn’t mean the movement stops. (Below info-graphic source is washington.edu)

Consumer and Industrial applications have very different requirements from a market perspective, with content choice and look and feel very important for consumer markets, system performance and governance sitting higher in industrial use cases. With the costs associated with adding these technologies to industrial environments under the microscope, companies must focus strongly on measuring and building the return on investment (ROI) models.

7: Protecting the User and the Experience

With these technologies predicted to get even closer than headsets (smart contact lenses for example -link here), its quite important the UX designers can intrinsically build in comfort and safety into any application. Too many times we have seen people fall through something whilst wearing a headset (more so with VR technologies). And that’s just the physical safety. When the threshold between physical and augmented worlds gets closer and closer (mixed reality), we want to avoid a scenario of interface overkill.

Whilst the past few years may indicate that these technologies are fads, the reality is far from it. They will become part of our social fabric as a new form of mobile technology. Ensuring the users experience with these technologies will be the critical enabler in their success and adoption rate.

Designing for AR and VR entails there be better understanding of a user’s need when it comes to context of use. It’s about building connections between the physical and digital world, requiring an interdisciplinary effort of service design, interaction design and industrial design.

IoT Impact on the Manufacturing Industry (Part 2)

Continuing on from my last blog post, another example for IoT use in manufacturing would be for the asset management to distribute work orders and configurations to the tools or the different stages of production. And vice versa, calibration information can be fed back to the Enterprise Resource Planning (ERP) system to associate them to the bill of material (BOM). Big data and NoSQL technology is an enabler in this regard, as they can allow for the management of huge volumes of heterogeneous, multi structured data about the production process, from the data types discussed, to even images from AOI (Automated Optical Inspection) systems and other production modules. With recalls a concern point in global manufacturing, this can be an ally in the fight to keep costs down for manufacturing.

IoT can also have an impact is in intelligent edge devices and their use in improving supply chain optimization and modularity of manufacturing. Consider surface mount technology (SMT), where there is so many moving parts, calibration, types of technology used in the placement and verification of board level components. IoT sensors could be utilized to centralize SMT line asset management and to read calibration information via the factory WLAN. The asset management can form the link between the SMT tools and the ERP (Enterprise Resource Planning) and MES (Manufacturing Execution Systems) that oversee the manufacturing process.

A challenge that presents itself to the manufacturing industry is the ageing workforce, and this means that anything that speeds up the manufacturing process is critical. The advancement in mobile technology is a key enabler in ensuring that passing information to the shop floor becomes quicker, improving response time, visibility, and accessibility of operations. The recent advancement of wearables also will have an impact on enhanced visibility on the shop floor.

Building Blocks for IoT in Manufacturing

Business owners need to look at four technology elements that provide the foundation for smart manufacturing. These include (but not limited to):

  • Security: IT security is a major obstacle to setting up smart factories. Operations managers need to make sure that necessary safeguards are built into the solution including security procedures such as physical building security, hardware encryption and network security for data in transit. Security and networking solutions must also be engineered to withstand harsh environmental conditions, such as moisture and temperature, that aren’t present in typical networks. Identity and authentication structures will also need to be updated to support such “things” as well as people.
  • More Advanced Networking: Smarter manufacturing environments need a standardized IP-centric network that will enable all the devices/sensors in a plant to communicate to enterprise business systems. Cisco research states that only 4 percent of the devices on the manufacturing floor are connected to a network. A standard IP network also makes it easier to connect and collaborate with suppliers and customers to improve supply chain visibility. Manufacturers need robust networks that can cope with Radio Frequency (RF) challenges in the plant, harsher environmental conditions and need stability for transmission of alarms and real-time data processing.
  • Big Data Analytics: While manufacturers have been generating big data for numerous years, companies have had limited ability to store, analyze and effectively use all the data that was available to them, especially in real time. New big data processing tools are enabling real-time data stream analysis that can provide dramatic improvements in real time problem solving and cost avoidance. Big data and analytics will be the foundation for areas such as forecasting, proactive maintenance and automation.
  • Engineering Software Systems: Today’s IoT data is different than the data we use to operate our systems. It requires collecting a wide range of data from a variety of sensors. These software systems and models must translate information from the physical world into actionable insight that can be used by humans and machines. Toyota is using Rockwell’s software for real time error corrections in the plant. Toyota has minimized rework and scrap rates in its Alabama plant, which has resulted in an annual cost saving of $550,000.3

Building blocks for end-to-end infrastructure enabling manufacturing intelligence from the factory floor to the data-center (Intel) [4]
Building blocks for end-to-end infrastructure enabling manufacturing intelligence from the factory floor to the data-center (Intel) [4]
With IoT, IP networks and analytics, manufacturers can become more efficient, improve worker safety and offer new exciting business models. IoT will help manufacturers improve resource efficiency, safety and return on assets. Manufacturers that master this new dynamic will have a variety of new opportunities for revenue growth and cost savings.

References

3: How IoT will help manufacturing

http://www.industryweek.com/blog/how-will-internet-things-help-manufacturing

4: Industrial Optimization IoT (Intel)

http://www.intel.ie/content/dam/www/public/us/en/documents/white-papers/industrial-optimizing-manufacturing-with-iot-paper.pdf

IoT Impact on the Manufacturing Industry (Part 1)

“Industry 4.0” and “Smart Factory” are some of the terms used to describe the technological and social revolution that promises to change the current industrial landscape. Industry 1.0 was the invention of mechanical assistance, Industry 2.0 was mass production, pioneered by Henry Ford, Industry 3.0 brought electronics and control systems to the shop floor, and Industry 4.0 is peer-to-peer communication between products, systems and machines. It is clear that IoT will have a different impact statement depending on the application and/or industry, one that is of particular interest, given the emphasis on process, is Manufacturing. Compared to other realms such as retail and its intangible ways, manufacturing is about physical objects and how we can bring them to the consumer in a more efficient and automated way. The manufacturing landscape is ever changing, with automation through robotics the most recent enabler.

Challenges and Possibilities of IoT and Manufacturing 1

Gartner analyst Simon Jacobsen sees five immediate challenges and possibilities posed by the IoT for the manufacturing industry1.

1. CIOs and manufacturing leads will have to move even more rapidly

Jacobson says manufacturers have moved heavily toward individualization and mass customization as part of the luxury of connected products. But in order to enable that, you have to maintain alignment with supply management, logistics functions and partners to make sure all service levels are maintained: “I have to have knowledge of my processes and optimization of my processes at a hyper level, not just simply understanding at week’s end or at the end of the shift where I need to make adjustments and improve,” Jacobson said.

2. Security must be reimagined

A connected enterprise means that you can no longer simply physically secure the facility but should blend approaches of mobile and cloud-based architectures with industrial, control and automation, ensuring information is being managed. Jacobson says the challenge will be to merge the skills of engineers and process control teams with IT and more importantly, unify their disparate approaches to security.

3. IoT will create more visibility in process performance

There’s always been a form of automation and control in manufacturing, but implementing new business applications powered by IoT will allow you to connect devices to the factory network and know tolerances: “Being able to connect those dots and derive contexts of how processes are performing is absolutely going to be where the return on investment is coming from,” Jacobson said.

4. Predictive maintenance can generate revenue for OEMs

Asset performance management is of high value today. This is the ability to drive availability, minimize costs and reduce operational risks by capturing and analyzing data. Original Equipment Manufacturers (OEMs) have already started creating revenue by using IoT-enabled tools like predictive maintenance in order to guarantee uptime, outcomes and certain levels of performance for the customer: “When you guarantee these kinds of outcomes to the customers, you have to look at this from two different perspectives, how I monetize this but also how my customer monetizes this,” Jacobson said.

5. Production will play a new role in the manufacturing value chain

The boundaries between the physical and digital worlds are blurring. Chief Information Officers (CIOs) and manufacturing strategists can use the IoT, big data and cloud to redefine the role production plays in the manufacturing value chain. It no longer has to be restricted to being a cost center, and this has all to do with the new ability to not just accelerate but innovate on the factory floor. It’s the CIO’s challenge to keep pace with these new competitive changes.

Figure 10: Real Time Intelligence on the Shop Floor [2]
Figure 10: Real Time Intelligence on the Shop Floor [2]
In my next blog post, I will continue this discussion on IoT and Manufacturing, giving further use cases, and outlining the building blocks for IoT in Manufacturing.

References:

1: Gartner Best Practices for IoT in Manufacturing

https://www.gartner.com/doc/2899318?ref=AnalystProfile

2: Building Blocks for a Smart Plant

http://www.mbtmag.com/articles/2014/10/manufacturing-transformations-building-blocks-future-smart-plant